INTRODUCTION

Demon Carburetors™, the first new design in racing carburetion in 40 years, have many unique features that make them the ultimate choice for performance enthusiasts, like yourself. This manual will discuss the special points and unique features of the Demon carburetors, and the correct procedures for their proper installation and tuning. The goal is to help you understand the thoughts behind the Demon, and to increase your knowledge of carburetion on a whole. Please read and understand this manual completely to assure that you get the most out of your new Demon carburetor.

INSTALLATION

Checking the Baseline Adjustments

All baseline adjustments have been made at the factory during the final assembly and wet-flow testing stages of each carburetor. These settings should allow initial start and warm up of the engine. However, in order to assure safe operation, and to assist with fine tuning that will occur later, please check and make note of the following adjustments, prior to installing the carburetor on the engine.

Throttle and Accelerator Pump Linkage

1. Check the travel of the throttle linkage to be sure no damage has occurred during handling or shipping after its final assembly. The carburetor should open smoothly to wide open throttle, and return to its full closed position when the linkage is released. At wide open throttle, all butterflies should be parallel to each other, at about a 90° right angle to the baseplate gasket surface. Do not attempt to run a carburetor that opens the secondaries past full throttle, or sticks or binds at any point in its travel.

2. When the carburetor is in the closed (curb idle) position, there should be no play in the adjustment of the accelerator pump arms. The pump levers should begin compressing the pump diaphragms as soon as the linkage begins to move. Play in the pump arm linkage will delay the fuel discharge, and the result can be a stumble or hesitation as the carburetor begins to open. At wide open throttle, check to be sure that .015” to .020” travel remains in the accelerator pump linkage. If the pump diaphragms bottom out, premature wear or binding in the linkage will occur.

Slop in the linkage can be adjusted out by either tightening or loosening the lock nut. This will control the length of the compressed spring. Slightly bend the cam follower to adjust for linkage that bottoms out. Remember, it may take a balance of both cam follower and spring adjustments to get the system working best for the application. Different cam profiles are available which can alter the timing, volume, and duration of the pump shot. If pump cams are changed, it may be necessary to re-adjust the linkage.
Closed Butterfly Position

The initial setting of the closed butterfly position will vary slightly between carburetor model sizes. Most carburetors will have the butterflies adjusted with a small length (approximately .020", looking like a square) of the idle transfer fuel slot visible below the bottom edge of the butterflies.

Curb Idle Mixture Screws

The curb idle mixture screws are located on each side of the metering block. These screws control the amount of idle fuel mixture that will be discharged into the plenum from the curb idle ports located in the baseplate. These screws have been set during wet-flow testing at the factory and it is recommended that they remain in place as delivered for initial start-up.

Keep in mind that these settings are only a starting point, and that additional fine tuning may be required once the engine has warmed up to operating temperature.

Bolting the Carburetor to the Manifold

After the linkage and baseline settings have been checked, the carburetor is ready to be bolted to the manifold. Be sure to use a new gasket. The carburetor should slide easily over the studs. Do not force the carburetor if it hangs on the studs. If the carburetor does hang up, check for bent or improperly installed studs. Replace the studs if necessary. Once the carburetor is seated against the gasket, check to see that it sits squarely on the mounting flange.
The carburetor should not be able to be rocked diagonally. A carburetor that rocks is an indication that the manifold or carburetor spacer could be warped. This must be corrected before the carburetor is bolted down. When the carburetor sits squarely, it is safe to install nuts and washers. Be sure all nuts are installed on the studs and hand tight before beginning the final torque sequence. Use an alternating pattern, to tighten each nut a little at a time. Do not over tighten the nuts. Only 5-7 foot pounds of torque are required to secure and seal the carburetor base to the manifold. Once the nuts are evenly torqued, check the carburetor linkage for smooth operation to wide open throttle, and then closed again.

WARNING: Baseplates that are cracked during installation are not covered under warranty.

With the pedal held firmly against a stop, pull the carburetor to its wide open position. Adjust the linkage rod or cable to the proper length, and then attach it to the baseplate linkage. Remember, the pedal should come against a positive stop, just as the carburetor gets to wide open throttle. With the linkage rod attached to the baseplate, make sure the carburetor can return to its closed position. Install your return spring(s), and check again for smooth operation to wide open throttle, and then closed again.

Connecting the Throttle Linkage

Get a helper for this part of the installation. Have someone sit in the car and hold the pedal firmly against the floor or stop. A rigid, positive stop is necessary. This is especially important in cars with fabricated sheet metal firewalls that can flex under pressure from the driver’s foot.

DO NOT RELY ON THE BASEPLATE LINKAGE AS A STOP! FAILURE TO USE A POSITIVE PEDAL STOP CAN RESULT IN LINKAGE DAMAGE THAT CAUSES THE THROTTLE TO STICK IN THE WIDE OPEN POSITION.

Connecting the Fuel Lines

Always use lines and fittings that are built for automotive use, and compatible with your type of fuel. Stainless steel braided, or push-lock type reinforced hose with AN swivel connections are recommended on all fuel lines. Do not use thread lockers, sealing compounds, or teflon tape on AN flare fittings. When installing fuel bowl inlet fittings, use only the sealing washers or o-rings provided with the fitting. In most cases, a drop of oil to prevent thread galling, is all that’s necessary when installing pipe threaded fittings. However, if a thread sealant is used on pipe fittings, use extreme caution to prevent any tape or compound from entering the internal flow area. Remember to check for leaks when the system is under pressure. If a leak is detected, replace the malfunctioning part. When installing new fuel lines, be sure to flush the lines clear of any debris that might remain from the hose cutting or assembly process.
Vacuum Lines

All Mighty Demon carburetors have three vacuum sources on the baseplate that can be used for PCV, distributor vacuum, diagnostics, or any other vacuum operated accessories. The large fitting on the back of the baseplate, and the rear small fitting on the front of the baseplate, are direct (below the butterfly) manifold vacuum sources. The small fitting on the side of the baseplate, closer to the primary bowl, provides a ported (above the butterfly) vacuum source. Be sure all vacuum lines are connected or plugged before you attempt to start the engine.

Ladies and Gentlemen, Start Your Engines!

Get a helper. Unless your car can be started from the engine compartment, starting your engine for the first time should always be performed with an assistant. A second set of eyes to watch for fuel leaks can be invaluable. A generous amount of initial timing is also beneficial to ease starting. We find 18-24° of advance suitable for most performance applications.

Set the engine to a fast idle during the warm up period. If you change the adjustment of the idle speed setting screw for the warm up period, make a note of the screw setting so that it may be returned to its original position after warm up. This will prevent any driveability problems that could be caused by incorrect butterfly position.

Allow the engine to achieve normal operating temperature before attempting final adjustments to the idle speed or idle mixture settings. It is however, acceptable to make float level or fuel pressure adjustments during the warm up period.

Preliminary Tuning and Adjustments

The following preliminary adjustments should be made prior to attempting to drive the vehicle.

Fuel Bowl / Float Level Adjustment

Although the float levels are preset during the assembly process, we recommend that they are rechecked each time the fuel bowls are removed from the carburetor. To verify the ‘dry setting’, simply invert the fuel bowl such that the weight of the float in the empty bowl rests against the needle and seat in the closed position. The distance between the top of the float and the inside top of the fuel bowl should measure approximately .400” to .500”. A 13/32” or 7/16” drill bit is
an excellent gauge for measuring this distance. Remember, this is only a provisional setting. Final checking and adjustment must be made with the engine running and operating at the correct fuel pressure. Final fuel level adjustments can be made before the engine reaches operating temperature. A good initial setting is to have the fuel level in the sight window aligned with the center of the cast-in rib, as illustrated by the arrow.

Changing the float level is accomplished by loosening the locking screw and rotating the adjuster nut on the top of the bowl. To prevent fuel leakage during the course of adjustments, only loosen the locking screw enough to allow rotation of the adjuster nut. Rotating the adjuster nut clockwise will lower the float level setting; conversely, rotating the adjuster nut counterclockwise will raise the float level setting.

It's important to note that, although increased fuel levels are immediately visible in the sight glass, lowered fuel levels are not. The excess fuel in the bowl must be consumed before the fuel level can stabilize at the new lower setting. When lowering the float levels, allow the engine to run for a few minutes, or gently rev the engine until enough fuel is used to establish the new lower setting. For this reason, setting the floats a little low (.500” or more) during the ‘dry setting’ procedure, then raising them to the correct operating levels with the engine running, will prevent flooding at start up. It will also shorten the time necessary to reach the correct setting. Experimenting with float settings a little above or below the start up setting is also acceptable.

Curb Idle Speed and Mixture Adjustments

Fine tuning of the idle speed and mixture must be done with the engine at operating temperature. A good rule of thumb to observe is to not attempt adjustments until the engine has achieved 160 degrees water temperature. Adjusting the engine cold will usually result in a rich mixture at normal operating temperature. It is also helpful to use a tachometer and/or a vacuum gauge for setting the idle speed and mixture.

If you have set the butterflies open for fast idle during warm up, return them to their original closed position as discussed in the preliminary set up instructions. If the engine stalls as you close the butterflies, it is usually an indication of a lean idle condition. Turn all 4 mixture screws out 1/4 to 1/2 turn from the start up setting and re-fire the engine. Also check to be sure that with the engine idling, there should be no fuel visible dripping from the venturi boosters. If fuel is visible from the boosters, then the floats may be too high, the butterflies are still too far open, or the fuel pressure is too high. Do not attempt to correct the idle mixture until the necessary adjustments have been made to stop fuel flow from the boosters.

You may now evaluate the adjustment of the idle mixture screws. Adjusting the idle mixture usually takes two or more trips around the car. Turning the screws in, clockwise, reduces the amount of idle fuel and leans the idle mixture. Backing the screws out increases idle fuel and enriches the idle mixture.
Begin by turning each screw in 1/8 to 1/4 turn at a time. If idle speed decreases, back the screws out 1/8 to 1/4 turn. If idle speed increases, adjust them in again. Adjusting the screws to less than 1 full turn open can result in an off idle stumble. However, some engines may respond well and not stumble with less than one turn.

The goal for best idle quality and throttle response is to have the engine idle with the butterflies closed, at the correct RPM, with the highest manifold vacuum, and the mixture screws adjusted between 1 and 2 1/2 full turns out from fully closed. Again, your particular combination may function correctly outside of this range.

If you have any further questions concerning the tuning of your carburetor, please contact the tech staff for more information.

Fuel Pressure

Most gasoline powered engines require between 6 and 7 1/2 PSI fuel pressure. Gasoline carburetors can be run either at idle or wide open throttle at these pressures. Be sure your fuel delivery system is properly adjusted and able to maintain volume flow at these pressures. Improperly adjusted or inadequate fuel delivery will result in poor performance, affect carburetor tuning, and possibly cause damage to the engine.

General Tuning and Component Information

Once you have completed the initial installation, and preliminary adjustments, you are now ready to test the vehicle and evaluate any other possible tuning adjustments. Information on changing the configuration or fuel metering of your Demon is also included in this section.

Metering Blocks

The metering block is the part of the carburetor having the two-fold job of controlling the flow of fuel into the venturi along with the duty of mixing air and fuel prior to its introduction to the main air stream. This is done through a series of sized orifices located in the metering block. These orifices will be discussed from a tuning standpoint along with a discussion of the different metering blocks available for the Demon carburetors.

The metering blocks from Demon Carburetion are made of billet aluminum, compared with standard blocks that are cast zinc. This in itself offers a major advantage. As you can see in the photograph below, cast blocks have the potential to have porosity throughout the block. This porosity can lead to a “bleeding” effect between the different circuits of the metering block, which makes precise tuning impossible. The use of billet aluminum eliminates this problem.

Each block is specifically tuned for its specific application. As mentioned before, this tuning is accomplished through the various sized orifices in the block. Understanding the function of these various devices is critical to understanding how the carburetor works.
Idle Feed Restrictor

The idle feed restrictor controls the amount of fuel that enters the idle circuit from the main well. This orifice controls the amount of fuel available for the idle circuit. If all other tuning results in a lean or rich idle circuit, an adjustment here may be necessary. As with any fuel restrictor, the larger the hole in the restrictor, the more fuel that will be introduced into the idle circuit. Make small changes, .001” or .002”, to all four restrictors and work towards your desired tuning point.

Emulsion Bleeds

There are six (6) emulsion bleeds per metering block, three (3) for each main well. These orifices play a part to control the density of the fuel in the block by metering the amount of air that is introduced into the fuel in the main well. This, in conjunction with the air bleeds in the main body, help to control the shape of the fuel curve. The emulsion circuitry of your Mighty Demon has been engineered through extensive wet flow, dyno and street & track testing. **A note of caution:** tuning of emulsion bleeds should be performed only by those with a deep knowledge of carburetors, otherwise, a poor-running engine or damaging internal engine parts could be the result.

Main Well Jets

Main jets, located along the bottom edge of the block on the side opposite the bleeds, control the amount of fuel that enters the metering blocks, and for that matter, the amount of fuel moved by the carburetor. If the engine appears to be running rich through the entire powerband, a reduction in jet size will lean the fuel curve out. Jets are numbered, and the larger the number, the greater the amount of fuel that will be able to enter the fuel circuits.

Tuning should be performed by making jet changes of a number or two, in either direction. As with any engine tuning, erring to the rich will produce less than optimal performance, where as the same mistake to the lean can result in severe engine damage. **Err to the rich!**

Demons produce a very linear fuel curve, however it differs from the curve of other carburetors. Due to the improved atomization characteristics of the Demon, tuners with data acquisition equipment may notice brake specific numbers lower than what has become known as the “normal.” A Demon with an overly rich tune-up may act excessively sluggish compared to other style carburetors. In other words, if you attempt to match “normal” brake specific numbers, you may be left with a sluggish Demon that is operating well below its potential.
The main body’s unique top shape increases the air flow capacity over other carburetor designs. The accelerator pump squirter and the air bleed bosses have been moved back to further improve flow characteristics. Air bleed and squirter changes have an effect on the overall performance of the carburetor.

Main Body

Air Bleeds

The screw in air bleeds, located in the upper bowl portion of the main body between the wall and the venturii, shape the fuel curve by helping to control when the idle and main circuits start. The four (4) idle bleeds are located closest to the air cleaner ring, while the four (4) high speed bleeds are found on either side of the squirter bosses. A larger bleed can be used to slow down, or delay, the related circuit, and vice-versa for a smaller bleed. As with the emulsion bleeds, tuning with the air bleeds should be done only by someone with a deep understanding of carburetion to prevent a poorly operating carburetor. If air bleeds are changed, be careful not to drop them down the venturi or serious engine damage can occur.

Squirters

There are two types of squirters; straight and tube type. The tube type squirters are easily identified by the short tubes extending from the exit orifice of the squirter. The exit orifice diameter of either type squirter controls the duration of the pump shot. The smaller the diameter, the longer it will take for the complete volume of the pump to
discharge. A larger diameter discharges the pump’s volume quickly. This is assuming no changes in pump cams.

Secondary Throttle Linkage

There are two styles of secondary connecting links for a Demon; one to one and progressive. The one to one link, which is the longer of the two links, opens the secondaries at nearly the same time and rate as the primary throttle blades. The progressive link allows the primary blades to open about 1/3 of their total travel before the secondaries begin to open. The one to one link is installed in the lower of the two holes on the primary throttle linkage, while the progressive is installed in the upper hole. Both links install into the oval slot on the secondary and are secured by a small washer and cotter pin.

Mighty Demon carburetors are supplied with the progressive link.

A change in these links has its greatest effect on driveability. The one to one link produces an increased availability of air/fuel to the engine earlier. The progressive link delays this availability until later in the linkage travel. Both have their advantages. The choice is up to the individual driver.

For additional technical information, Barry Grant Inc. recommends How to Tune & Win With Demon Carburetion by Ray Bohacz, published by S-A-Design. Order online: www.cartechbooks.com

Tuning Parts & Accessories:

Most standard tuning parts (Jets, Power Valves, Squirters, Needles & Seats, Bowl and Metering Block Gaskets) from several aftermarket companies will interchange and work on your Demon. However, we recommend the use of genuine BG Fuel System components from Barry Grant to keep your Demon operating to its potential. Below is a listing of BG Fuel System parts available for Demon carburetors.

- Bowl & Block Gasket Kit 190080
- Bowl Gaskets (5pk) 190030
- Block Gaskets (5pk) 190031
- Jets 50 to 100 (pair) 2300XX
- Power Valves - 2.5 to 10.5 (each) 2400XX
- Power Valve Plug (each) 240200
- Squirters - straight 25 to 52 1221XX
- Squirters - tube type 25 to 45 1220XX
- Pump Cam Assortment 120077
- Blank Air Bleeds (10pk) 200082
- Blank Idle Feed Restrictors (10pk) 200083
- .110” Needle & Seats (pair) 120006
- Standard progressive link 120094
- 1 to 1 slip link 120098
- Jet Extensions 120001
- Clearanced Float 120004
- 1/2” Open Spacer 110050
- 1” Open Spacer 110018
- 1/2” 4-Hole Spacer 110051
- 1” 4-Hole Spacer 110019
- Carb Studs (std) (4) 160040
- Carb Studs Spacer (4) 160042
- Bowl Screws 421386
- Rebuild Kit 190004
- Solid carburetor bushing 160009

For Technical assistance please contact a Sales Technician at the number below.